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1    General methodology 

The Mathematics of the Brain (MoB) project is initiated by the DARPA DSO Mathematical 
Challenge One: Develop a mathematical theory to build a functional model of the brain that is 
mathematically consistent and predictive rather than merely biologically inspired. This section 
discusses some unique features of the MoB project that distinguish it from other state-of-the-art 
projects aimed at the development of the mathematical (computational) theory of the phenomenon 
of information processing in the human brain. In what follows we explain the basic principles 
underlying the general methodology of the MoB project. 

1.1    The problem of system integration 

The main thrust of the MoB project is to tackle the problem of system integration in brain 
modeling and cognitive modeling. Currently there exists a large and rapidly growing set of 
different computational models of what can be loosely referred to as the parts of the brain and/or 
the parts of the brain's behavior. At the same time, very little attention is paid to the question as 
to how (and if) such partial models can be integrated in a mathematical theory of the whole brain 
as an integrated computing system. We consider this question to be crucial for any consistent 
mathematical theory of the human brain and human cognition. 

Anyone who was involved in a nontrivial reverse engineering project can safely say that, in 
real life, it is seldom (if ever) possible to reverse engineer and understand parts of an unknown 
integrated computing system (much less, the parts of the behavior of such a system) without 
having a good initial hypothesis about the basic principles of organization and functioning of the 
whole system. There is no reason to assume that the situation can be simpler in the case of 
reverse engineering the brain. After all, the brain is a real working integrated computing system! 

It should be mentioned that the critical importance of the problem of system integration in 
brain modeling was well understood in the early days of cybernetics. Here is a revealing quotation 
from the neurophysiologist Zopf Jr. (1961) [26]: 



"I am intolerant of those who regard the whole of biological data of the phenomena 
of biological organization and intelligence as not more than a grab bag from which to 
abstract technological goodies. My intolerance is tempered only by the belief that such 
casual abstraction may not succeed." 

Unfortunately, since the late 1960-s the main trend in brain modeling and cognitive modeling 
has been toward system fragmentation rather than system integration. The concept of the model 
for the whole brain has been taboo1. 

1.2    Three general postulates 

Let (W, D, B) be a cognitive model, where W is an external world (environment), D is a set of 
human-like sensorimotor devices, and B is a computing system simulating the work of the human 
nervous system - for simplicity, call it the brain. The general structure of the cognitive system 
(W, £>, B) is illustrated in Figure 1. The system (D, B) will be called a human-like robot or simply 
a robot, system (W, D) will be called an external system. 
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Figure 1: Cognitive system (Robot,World) as a composition of two machines (W,D) and B 

At the system-theoretical level, both B and (W, D) can be treated as abstract machines, the 
inputs of B, xB', being the outputs of (W, D), yD\ and vice versa (xD = yB). 

Let B(t) denote a formal representation of B at time t, and let t = 0 correspond to the 
beginning of learning. Though, in the case of the human brain it is difficult to draw a line 
between the development and learning, this approach can be thought of as a reasonable initial 
approximation. In the case of a human-like robot, the beginning of learning can be clearly defined. 
We proceed from the three general postulates: 

PI. There exists a relatively short formal representation of B(0) as an abstract com- 
puting system. 

For the sake of concreteness, we postulate that the size of this representation does not 

1 The big rift between symbolic cognitive modeling and dynamical neural modeling opened after the famous 
criticism of the Perceptron [19]. The original spirit of cybernetics has never been restored. The "neural renaissance" 
that begun in the early 1980-s has not repaired the damage. Arguably, it increased the rift by creating a form 
of dynamical extremism with a strong anti-symbolic mental set. A balanced symbolic/dynamical approach to the 
problem of the whole brain - like the one represented by this report - became next to impossible to promote. 



exceed several megabytes. The exact size is not important for our purpose. What is impor- 
tant is that this size cannot be too big because B(0) is encoded in some form in the human 
genome. The whole human genom fits into « 700MB. 

P2.   The main part of the formal representation of the trained (educated) brain, 
B(t), is created in the course of learning. 

Let, for the sake of concreteness, t = ^o = 20years. Any formal representation of Bfoo) 
must be very long (terabytes?). It must include, in some form, a formal representation of 
an individual experience of a person. That is, an overwhelming part of the formal represen- 
tation of B(t2o) is created in the course of learning. 

P3. The essential difference between B(t) and B(0) is in the state of LTM . 

Let B(t) = (H(t),g(t)), where H(t) is the representation of the brain hardware, and g(t) 
is the representation of the brain knowledge (brain software). As a zero-approximation hy- 
potheses we postulate that H(t) = H(0) = H. 

Remark. This is not literally true in the case of the biological brain. A child grows 
and becomes an adult. We claim, however, that, functionally, H does not change much. 
What changes dramatically is the software, g(t). 

1.3    Falsification principle 

We treat the problem of the human-like robot (D,B) as a scientific/engineering problem rather 
than just an engineering (bionic) problem. The difference is as follows. In the case of the bionic 
approach, one uses biological data only as a source of inspiration for introducing different engi- 
neering/mathematical ideas. In the case of the scientific/engineering approach one relies not only 
on biological inspiration but also on biological falsification. 

Falsification principle requires one to pay more attention to the negative facts - the facts that 
contradict to one's ideas — rather than to the positive facts - the fact that "confirm" one's ideas. 
This falsification strategy is very difficult to promote in the case of brain modeling and cognitive 
modeling. Explaining the nature of the difficulties, the neurophysiologist D. Burns (1958) [4] 
wrote that, (deling with the brain) 

it is distressingly easy to find what one is looking for, and remarkably difficult to 
discern the unsuspected or the unwanted. 

To appreciate the importance of negative facts consider the following gedanken experiment. 
Imagine that we are testing the hypothesis that a certain object is made of gold. We can find 
many positive facts "confirming" our hypothesis: the object is heavy, it is yellow, it is shining, 
etc. However, all these positive facts have no value if we can show that the density of the object's 
material is, say, 8.9g/cm? - that is, much less than the density of gold, 19.3p/cm3. This single 
negative fact has more power than all positive facts taken together. Our hypothesis is false no 
matter how many more positive facts we can find. 

The power of NO follows from the basic properties of the if p then q (p —> q) statement. If 
implication q is false, then the proposition p is false. However, if q is true, p can either be true 



or false. That is, false theories can produce true implications. These true implications, however, 
do not validate a theory. Only false implications have real power. One can say that, in science, 
YES is just the absence of NO. 

The problem of system integration outlined in Section 1.1 provides a powerful falsification 
test. Let a,b,c,... be some basic properties of the brain as an integrated computing system, and 
let A,B?C,... be the sets of all possible systems with the properties a,b,c,..., respectively. If one 
treats all the above properties as constraints on a single integrated model of the brain, then the 
search area for the corresponding model is the intersection Ap|BP|C... The more properties 
one considers the smaller becomes the search area. In contrast, if one ignores the requirement 
of system integration and treats each property separately - just as a biological inspiration for 
studying the classes of systems with the corresponding "biological" properties - the search area 
is the union A |J B (J C... Ironically, with the latter approach, the more properties one considers 
the bigger becomes the search area. The situation is illustrated in Figure 2. 
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Figure 2: On system integration and falsification. 

The essence of the falsification principle is well represented by the famous Sir Arthur Conan 
Doyle quotation: 

When you eliminate the impossible, whatever remains, however improbable, must be 
the truth. 

It is worth mentioning that all successful scientific theories rely on refutation. In contrast, all 
pseudoscientific theories rely on confirmation. 

1.4    On basic mechanisms and specific constraints 

The general relationship between the mathematical theory of the behavior of the cognitive system, 
(W,D,B), and the mathematical theory of the brain, B, can be meaningfully compared with the 
general structure of a traditional physical theory. Let us take the classical electrodynamics as an 
example of the latter theory. To get a specific methodological metaphor, consider the problem of 
simulating the behavior of electromagnetic field in the Stanford Linear Accelerator (SLAC). The 
mathematical model underlying this simulation can be represented as a pair (C,M), where C are 
the specific external constraints (boundary conditions and sources) representing the design of the 
SLAC, and M are the Maxwell equations describing the basic laws of electricity and magnetism. 
The broad predictive power of the classical electrodynamics is a result of an adequate separation 
of the basic constraints, M, and the specific problem-oriented constraints, C. Without such an 
adequate separation, each new set of specific constrains would lead to a new phenomenological 



theory. We argue that, similarly, it is critically important to adequately divide a consistent 
mathematical theory of the behavior of system (W,D,B) into "basic constraints", B, and "specific 
external constraints", (W,D). That is, to develop such a consistent theory, we should concentrate 
on reverse engineering the basic principles of organization and functioning of B(t) (particularly, 
B(0)) rather than on the simulation of the specific cognitive phenomena per se. One can safely 
say that it would be impossible to reverse engineer the Maxwell equations from the analysis of 
the behavior of electromagnetic field in the SLAC. 

2    The concept of E-machine 

This report deals with a class of brain models (models of B) called the E-machines [6, 7, 8]. In the 
general case, a complex E-machine (CEM) is a hierarchical associative learning system built from 
several homogeneous associative learning systems called primitive E-machines (PEM). A PEM 
can be thought of as a "higher-level" (procedural) formalization of the intuitive notion of a context- 
sensitive associative memory (CSAM) [9]. This system-level formalization is largely independent 
of a specific neural implementation. In what follows we first give an abstract description of 
a PEM and then present a specific example illustrating this concept. The problem of neural 
implementation of E-machines is discussed in Section 8. 

2.1     An abstract description 

A primitive E-machine (PEM) is a system PEM = (X, Y, E, G, fy, fe, fg), where 

• X and Y are finite sets of symbols called the input and the output set, respectively; 

• G is the set of states called the states of encoded (symbolic) long-term memory (LTM) or 
the G-states. The letter 'G' implies the notion of "synaptic Gain". The G-states represent 
the symbolic knowledge (software) of an E-machine. 

• E is the set of states, called the states of dynamical short-term memory (STM) and intermediate- 
term memory (ITM), or the Estates. The letter 'E' implies the notion of "residual Excita- 
tion" . An E-machine may have several types of E-states representing different temporary 
attributes (dynamical labels) of the data stored in LTM. The E-states serve as the mech- 
anism for context-dependent dynamic reconfiguration of the knowledge represented by the 
G-states. 

• fy :XxExG —► Y is a function called, interchangeably, the output procedure, the 
interpretation procedure, or the decision making procedure.2 

• /e : X x E x G -► E is a function called, interchangeably, the next Estate procedure, or the 
dynamic reconfiguration procedure. 

• /5:XxExG->Gisa function called, interchangeably, the next G state procedure, or 
the incremental learning algorithm. 

2In general, fy is a probabilistic procedure, so the symbol "-+" should be interpreted dynamically, as "compute", 
rather than statically, as ilmap". 



Note. A PEM may have other types of states. For simplicity, these states are not included in 
the above general description. 

The work of a PEM is described in discrete time, */, as follows: 

(1) y{y) = fy{x{v\e{vU(y)), 

(2) e(v+l) = fe(x(v),e(v),g(u)); 

(3) g(v+l) «/,(*(!/), e(v),g(v)); 

with initial states e(0) and p(0), 

where x{y) G X, y{y) G Y, e{y) G E, and g{y) G G . 

In the next section, we present an explicit example of a PEM. The model is simple enough 
to be theoretically understandable. At the same time it is sufficiently complex to produce some 
nontrivial robopsychological phenomena. (The term "robopsychology" is borrowed from I. Asimov 

HO 

2.2    An example of a primitive E-machine 

Figure 3 illustrates the architecture of a simple PEM. The interpretation procedure fy is divided 
into four elementary procedures: DECODING, MODULATION, CHOICE, and ENCODING. 
The model uses a single E-state array, e(i). 

The next E-state procedure, /e, is similar, in this example, to the fast-charging-slow-discharging 
of a capacitor. The model employs a universal learning algorithm, fgi that simply tape-records 
input/output associations in the LTM. The recorded association gets an elevated level of residual 
excitation to produce an effect of recency. This is described as the addition to the next E-state 
procedure. 

Variables: 

• v G {0,1,...} is a discrete time (the cycle number).3 

• x(:) = x(l),..., x{m) is the input vector with m components. In this example, each com- 
ponent is treated as a symbol. That is, only the equal/not equal relationship is defined. We 
use a special empty symbol, e, to indicate "no data". 

• wx(:) = wx(l),..., wx(m), where wx(j) > 0 (j = 1, ..m) is the vector describing the weights 
of input symbols. 

• gx(:,i) = gx(l,i),... ,gx(m, i) is the vector stored in the i-th location of the Input LTM 
(ILTM), where i G {l,...n}. 

3 Treated as real-time cognitive models, E-machines can be thought of as operating with a psychological time 
step At on the order of 1 — 10msec. More complex models of E-machines with multi-step cycles may use several 
time variables, i/l, v2,... with different time steps. 
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Figure 3: Example of a primitive E-machine 

• s(:) = (s(l),... ,s(n)) is a similarity array. In general, s(z) is a nonnegative real number 
representing a similarity between x(:) and gx(:,i). In this example, we use a very simple 
criterion of similarity - the number of matching non-empty symbols. Accordingly s(i) 6 
{0,1,...,m}. 

• e(:) = (e(l),..., e(n)) is an Estate array. Variable e(i) is a nonnegative real number that 
represents the level of residual excitation associated with the z-th location of the LTM. In 
this example, we use a single E-state array. In more complex models, several E-state arrays, 
el(:), e2(:),..., with different dynamic properties can be used. 

• se(:) = (se(l),... ,se(n)) is modulated or biased similarity array. In general, se(i) is an 
element of a real array that describes the similarity affected by the residual excitation. 

• r(:) = (r(l),... ,r(n)) is a retrieval array. In general, r(i) is an element of a real array 
that represents the level of activation of the i-th location of OLTM. In this model, we use a 
random winner-take-all choice, so only one component of this array, r(iwin), corresponding 
to the winner, iwin, is not equal to zero. Formally, in this example we need only the variable 
iwin. The r-array is introduced for the sake of completeness. It does not appear in the 
following equations. This array is needed in more complex models of primitive E-machines 
that employ more complex encoding procedures. 



• 9V{'-^) = #2/(M)> • • -i9y(p,i) is the vector stored in the i-th location of the Output LTM 
(OLTM). In this model, components of gy(:,i) axe treated as symbols. 

• y(') = 2/(1)» • • • i yip) is the output vector retrieved from OLTM. In this model the output is 
read from the winner location of OLTM. Components of y(:) are treated as symbols. 

• xy(:) is the input to the OLTM used for writing output data in this memory. 

• wptr and wen are the auxiliary variables used to describe the tape-recording learning algo- 
rithm. They serve as the write-pointer and the write-enable, respectively. 

Parameters: 

• a < 0.5 is a parameter that determines the modulating effect of e(i) on s(i) that produces 
biassed similarity se(i). 

• c < 1.0 is a parameter that determines the rate of decay of e(i). The time constant of decay 
is T = 1/(1 — c), so c = 1 — 1/T. 

• m is the number of components in the input vector x(:). 

• n is the number of locations in the ILTM and OLTM. In this model, it is the size of all 
arrays with index i. Namely, s(z),se(i),e(i), gx(:,i), and gy{:,i). 

• p is the number of components in the output vector y(:). 

Remark. In the experiments discussed in this paper, weights, wx(:), will be treated as parameters. 
In more complex experiments the pair (x,wx) can be treated as an input. In fact, in this report, 
we will only need wx(j) = 1, for j = 1, ..ra. 

Procedures: 

DECODING (computing similarity): 

for i = 1 : n     (this for is applied to expressions (1), (2), and (5)) 

(1) s(t) = £7=1 wx(j) ■ T(x(j) = gz&i) * £) 

where,  T{z) = 1, if z * true, else T(z) = 0 

MODULATION (computing biased similarity): 

(2) se(i) = s(i) -(l + a-e(t)) 

CHOICE (randomly selecting a winner): 

(3) twin  :G   {i : se(i) = max{se) > 0}  =  MSET 

where :6 denotes the operation of the random equally probable choice of an element from a 
set. 
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ENCODING (retrieving data from OLTM): 

(4) y(:) = gy{' ,<wn) 

NEXT ESTATE PROCEDURE (dynamic reconfiguration): 

(5) if (s(i) > e(i)) e(i)(v + 1) = s(i) ; else e(i)(u + 1) = c • e(i);  end 

where, e(i)(i/ 4- 1) is the value of e(i) at the next moment u + 1. For simplicity, we do not 
write f in the current values of the variables. That is, e(i) is the same as e(i)(z/), s(i) is the same 
as s(i)(i/), etc. 

NEXT G-STATE PROCEDURE (learning) 

(6) z/(wen = 1) gx(:, wptr)(v + 1) = x(:); ^(:, wprr) = sey(:); 
wptr[v -f 1) = wptr + 1; end 

Remark. Expression (6) tape-records input and output vectors in the ILTM and OLTM, 
respectively, when recording is enabled, wen = 1. For simplicity, in this model, we assume that 
the weights of input symbols, wx(:), do not affect recording. We will always have wx(j) > 1.0. 

ADDITION to the NEXT ESTATE PROCEDURE (the recorded location of LTM, 
i = wptr, gets initial residual excitation) 

(7) if (wen == 1) e(wptr)(u + 1) = s(wptr) = Y!?=\ WXU) ' T(x(j) ^ c); end 

Remark. The truth function T(z) is defined in expression (1). Expression (7) adds residual 
excitation to the location of ILTM with i = wptr, - the location in which data was just recorded. 
This happens only if recording is enabled, wen = 1. The level of added residual excitation, 
e(wptr), is equal to the one that would be produced if the input vector x(:) were already recorded 
in t his location of ILTM, that is, as if gx(:, wptr) = x(:). This trick allows one to avoid introducing 
intermediate steps in the v — th cycle. 

System of references. The model described above will be referred to as Model (2.2) or PEM 
(2.2), meaning the model (PEM) described in Section 2.2. Similarly, expression (2.2.6) will mean 
expression (6) of Section 2.2, etc. 

3    Experimental system and the list of tasks 

3.1    Experimental system 

The structure of the specific cognitive system, (W,D,B), used in this report is shown in Figure 4. 
The system is intentionally simplified to make it as understandable as possible without losing its 
ability to illustrate the basic ideas. The ideas are scalable and can be employed in much more 
complex systems arranged on intuitively similar principles. 

The robot, (D,B), interacts with an external world, W, represented by a keyboard and a screen. 
The screen is divided into squares (only one row of squares is shown). For simplicity, we assume 
that the robot's eye can scan only one square at a time, call it the scanned square. We also assume 

11 
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Figure 4: Experimental system 

that the system has some eye tracking device (not shown), so when the robot depresses a key the 
character appears in the scanned square. It is easy to see that the described external system, 
(W,D), behaves, essentially, as a RAM. 

Two motor inputs, addr and din, serve, respectively, as the address and data inputs of a 
RAM. The sensory (visual) output, dout, serves as the data output . There is no control input 
similar to the unite-enable input of a RAM. We can say that system (W,D) is in the write mode 
when there is a nonempty motor input, din. Otherwise, the system is in the read mode. We will 
formalize this verbal description as the concept of a generalized RAM (GRAM). 

The robot's brain is divided into four parts: 

1. Associative learning system AS responsible for working memory and mental imagery.  The 
goal of this system is to learn to simulate the external system (W,D). In this case, (W\D) 
works as a RAM. 

2. Associative learning system AM responsible for motor control. The goal of this system is to 
learn to simulate the teacher. 

3. Sensory nucleus NS. In this case, NS works as a multiplexer that switches between the output 
from the eye, dout, and the output from AS, AS.y. 

Note. We use traditional notation in which A.y means variable y of a unit (object) A. 

4. Motor nucleus NM. In this case, NM works as a multiplexer that switches between the output 
of the teacher, call it T.y, and the output of system AM, call it AM.y.  Both the teacher 
and AM have three outputs denoted as yl,y2,y3. 

Note. We use the same identifiers for the local variables of different units. As mentioned 
above, we add the name of a unit to the name of a local variable to transform this local 
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variable into the corresponding global variable of the whole system.  That is, T.y2 means 
output y2 of unit T; AM.yl means output y\ of unit AM, etc. 

We will use Model 2.2. with m = 2 and p = 1 as unit AS. We will use the same model with 
m = 2 and p = 3 as unit AM. In the case of unit AS we will need residual excitation e(:), so we 
will have AS.a > 0. In the case of AM, we will set AM.a = 0. 

3.2    The list of tasks 
Here is a list of tasks from the project proposal. 

Task 1. A theorem providing the proof that a primitive E-machine with a single E-state function 
can learn to simulate a RAM buffer without moving symbols in LTM. 

Task 2. A theorem providing the proof that a primitive E-machine with a one-step delayed 
feedback can learn to simulate the finite-state part of any Turing machine. 

Task 3. A theorem providing the proof that a system consisting of two primitive E-machines, 
such as the brain of the robot of Figure 4, can learn to (mentally) simulate any Turing 
machine - that is, without using an external read/write memory. 

Task 4. Develop a C++ program simulating the system of Figure 4. 

Task 5. Intermediate performance report 

Task 6. Develop a C++ program simulating a neural network performing DECODING. 

Task 7. Develop a C++ program simulating a neural network performing random CHOICE. 

Task 8. Develop a C++ program simulating a neural network performing ENCODING. 

Task 9. Develop a C++ program simulating a neural network performing the NEXT-E-STATE 
procedure 

Task 10. Compile a list of topics for the Phase II of the MoB project. 

Task 11. Final performance report. 

4    External system as a generalized RAM 

In this section and the next one we will go through the following steps: 

Step 1. Show that the external system (W,D) of Figure 4 functions essentially as a symbolic 
RAM buffer. Formalize the notion of such a symbolic RAM buffer by introducing the 
concept of a generalized RAM (GRAM). 

Step 2. Dehne the problem of learning to simulate a GRAM. 

Step 3. Prove the theorem of Task 1. 

13 



4.1    The concept of a generalized RAM (GRAM) 

In what follows we formalize the verbal description of the work of the external system shown in 
Figure 4 as the concept of a generalized RAM (GRAM). Figure 5 gives two different interpreta- 
tions of this important concept. 

a) 

me: 

External system 

D 

i doutt 

~^~^ \t addr 

"]              din 

»i 

b) 

J i n 

mem(l) mem(i) mem(n) 

CK idr i ■ 

-*- 
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Figure 5: External system as a generalized RAM (GRAM), a) robo-psychological interpretation; 
b) concept of a generalized RAM (GRAM) 

DEFINITION: 
A generalized RAM (GRAM) is a system (A,D,M, /) (see Figure 5), where 

• A = {ai,..., On} is a set of symbols called address set For the sake of simplicity we will 
assume that A = {l,...,n}. In a more general case we would need to define a mapping 
A<-{l,...,n}. 

• D = {d\,..., dm, e} is a set of symbols called data set, where e is the empty symbol meaning 
"no data". 

• M = D x ... xD = Dn 

is the set of memory states represented as memory arrays (mem(l),... ,mem(n)), where 
mern(i) € D is the data stored in the z-th location of GRAM. 

• /:AxDxM-»DxMisa function computing the the output data and the next memory 
state. 
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Function / can be represented as the following MATLAB-like program. 

(1) if {din == e)  dout = mem(addr); 

(2) else  dout = din; mem(addr) = din;   end 

Note. Expressions are numbered independently, starting with (1), in each section. To refer 
to an expression from a different section we add the section number to the expression number. 
For example, expression (2.3) is the expression (3) from section 2. 

The main difference between a GRAM and a conventional RAM is: 

1. In the case of a GRAM, both address and data are treated as symbols: that is, only the 
equal/not equal relation is defined for the elements of A and D. 

2. GRAM is always in the write mode when input data is present, din ^ e. Only if input data 
is not present, din — e, GRAM is in the read mode. With this approach, we do not need a 
special control input, e.g., write.enable, to indicate the write or read mode. 

3. In the case of GRAM we do not need A = {1, 2,..., n}. We just need to have a mapping 
A <-► {1,2,..., n}. We also do not need input data symbols to be the same as output data 
symbols. For simplicity, we used the same data set D for din and dout rather than two 
different sets, say, Dm and D™*. What we need is a mapping, Dm <-> D0"'. Any mappings 
A «-> {1,2,... ,n} and Dm «-» D0"' can be learned, so specifying specific mappings makes 
no difference. We do not even need one-to-one mappings: several symbols form A could be 
associated with the same symbol from {1,2 , n}, and several symbols from Dm with the 
same symbol from D^. 

4.2    Experiment with a GRAM 

To get used to the notion of GRAM, it is helpful to follow the experiment with a GRAM shown 
in Figure 6, where A = {1,2}, and D = {a, 6, e}. The three-row table in the upper part of the 
figure displays the input/output sequence of GRAM as a function of discrete time v = 0,1, ..9. 
The din = e entries are shown as blank squares.   The two-row table in the lower part of the 
figure displays the contents of the two memory locations, mem(l), raera(2) as functions of v. The 
mem(i) = e entries are shown as blank squares. Let us follow the 10 cycles of the experiment: 
i/ = 0: 
Memory is empty: mem(:) = (raem(l),raera(2)) = {e,e). Input: (addr,din) = (l,a), produces 
output: dout = a, and writes a into location 1: raem(l) = a. 
v= 1: 
Memory state is: raera(:) = (a, e). Input: (addr,din) = (2, a), produces output: dout = a, and 
writes a into location 2: mem(2) = a. 
i/ = 2: 
Memory state is: raera(:) = (a,a). Input: (addr,din) = (1,6), produces output: dout = 6, and 
writes 6 into location 1: mem(l) = 6. 
i/ = 3: 
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V 

addr 
din 
dout 

mem(l) 
mem(2) 

0123456789 10 
1 2 l 2 l 2 l l 2 2 

a a b b a a 
a a b b b b a a a a 

a a bb bb a a a a 
a a b[b[brb|b_ a a) 

Figure 6: Experiment with a GRAM. A = {L 2}, D = {a, 6, e}. Empty symbol e is shown as a 
blank square. 

Memory state is: mem(:) = (6, a). Input: (addr, din) = (2,6), produces output: daui = 6, and 
writes 6 into location 2: mem(2) = 6. 
i/ = 4: 
Memory state is:   mem(\) = (6,6).   Input:   (addr,din) = (1,£), reads data from location 1: 
dout = mem(l) = 6. Memory state does not change. 
i/ = 5: 
Memory state is:   mem(:) = (6,6).   Input:   (addr, din) = (2, e), reads data from location 2: 
dout = mem(2) = 6. Memory state does not change. 
i/ = 6: 
Memory state is: mem(:) = (6,6). Input: (addr,din) = (l,a), produces output: dowi = a, and 
writes a into location 1: mem(l) = a. 
i/=7: 
Memory state is:   mem(:) = (a, 6).   Input:   (addr, din) = (l,e), reads data from location 1: 
dout = mem(l) = a. Memory state does not change. 
i/ = 8: 
Memory state is: mem(:) = (a,b). Input: (addr, din) = (2, a), produces output: dout = a, and 
writes a into location 1: mem(2) = a. 
z/ = 9: 
Memory state is:   mem(:) = (a, a).   Input:   (addr,din) = (2,e), reads data from location 2: 
dott* = mem(2) = a. Memory state does not change. 

4.3    Fixed rules and variable rules 

Analyzing the three-row input/output table shown in the upper part of Figure 6 we can discover 
two types of x —> y rules, where x = (addr, din) and y = dout: 

1. Rules of the type (addr, din ^ e) —► dout, call them fixed rules. In this specific example, the 
fixed rules are: (1,o) -* a, (2,a) —> a, (1,6) —► 6, and (2,6) —► 6. There arem-n = 2-2 = 4 
such rules. Fixed rules can be easily extracted from the shown xy-sequence by different 
learning algorithms. 

2. Rules of the type (addr, din = e) —> dout, call them variable rules. In this example, the 
variable rules are: (l,e) —♦ dout, and (2,e) —♦ dout. There are n variable rules. The output 
part, dout, of a variable rule depends on the most recently executed fixed rule with the same 
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address. For example, the output of rule (l,e) —> dout at */ = 7 is dout — a, because the 
most recently executed fixed rule with addr = 1 is rule (l,a) —► a at 1/ = 6. Variable rules 
cannot be correctly executed by a learning system that does not save information about the 
most recently executed fixed rules. 

It is useful to view fixed rules as a tool for assigning the right parts of variable rules. With this 
approach, we can say that the meaning or value of an address symbol in a variable rule depends 
on the most recent assignment. In the discussed example, each address symbol from A = {1,2} 
can be assigned any of two meanings (data values) from D — {e} = {a, b}. 

5     Problem of learning to simulate a GRAM 

5.1    Defining experiments of training and examination 

xl 

addr 

x2 

din 

AS 

GRAM 

xy 
sell 

NS 

NS.y 

dout 

Figure 7: Experimental setup for learning to simulate a GRAM 

The problem of learning to simulate a GRAM can be defined as a traditional supervised 
learning problem illustrated in Figure 7. Figure 7 is just a redrawn part of Figure 4 in which 
external system (W,D) is replaced by the GRAM. We keep the name AS for the learning system. 
We could use any other name since the problem of learning to simulate a GRAM is a problem 
independent of Figure 4. Inputs AS.xl and AS.x2 are connected to the addr and din inputs of the 
GRAM, respectively. Input AS.xy ~ that can be thought of as the desired output - is connected 
to the output of the multiplexer NS.y. GRAM plays the role of the teacher for system AS. 

To prove the theorem of Task 1 we assume that system AS is replaced by Model 2.2 with m=2, 
and p=l. That is x(:) = x(l),x(2) € A x D and y(:) = y(l) G D. It is convenient to divide an 
experiment with the system of Figure 7 into two stages: training and examination=test: 

Training. We assume that training starts at v = I/O and lasts until v «= i/l — 1, where v\ is 
the first moment of examination. We also assume that the following conditions are satisfied 
during training: 

1. sei = 1, and, accordingly, xy = dout. 

2. At the beginning of training Model 2.2 has empty ILTM and OLTM and zero residual 
excitation. That is, for i = 1 : n gx(l,i)(uO) = gx(2,i){yG) = e\ gy(l,i)(vO) = £, and 
wptr(uO) = 1. 
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3. Learning is enabled that is, wen = 1. We assume that and AS has sufficiently big LTM 
to record all training sequence. That is AS.n > v\ — vO, where AS.n is the number of 
locations of LTM of Model 2.2. 

4. Training continues until each pair {addr, din) from A x (D — {e}) is presented at least 
once. This means that each fixed rule of the simulated GRAM was demonstrated to 
AS at least once. Let m be the number of nonempty data symbols of GRAM. The 
number of fixed rules, n fixed = n-m, where n is the number of address symbols. That 
is, v\ — I/O > nfixed. 

Examination. At this stage, sei = 0, and AS.xy = NS.y. For simplicity, we assume that AS 
does not learn during this stage, that is, wen = 0. This requirement is not necessary. If 
AS.n is big enough, AS can continue self-learning during this stage. It will not affect t ho 
ability of AS to simulate GRAM. 

5.2    Proving the theorem of Task 1 

Theorem 1. The PEM described in Section 2.2 (Model 2.2) used as system AS in the experimental 
setup of Figure 7 can learn to simulate a GRAM from a sample of the GRAM's behavior of the 
length > n-m. 

Proof. We begin with a verbal explanation of the effect of working memory . The effect is produced 
by decaying residual excitation, e(i), associated with locations of LTM. 

Let the 2-th locations of the LTM (ILTM and OLTM) contain the record of the following 
fixed rule: gx(l,i) = a,gx(2,i) = d,gy(\,i) = d, where a £ A and d £ T> - {e}. The residual 
excitation e(i) associated with this location can reach the maximum possible level, emax — 2. in 
two situations: 

1. At the next moment after the rule was recorded in the i-th. location. This is the result of 
expression (7) from Section (2.2) (expression (2.2.7)) which sets residual excitation at the 
moment of recording. 

2. If the rule is already recorded and input is x{\)(v) = a, and x(2)(v) = d. In this case, 
e(i)(v + 1) = 2 is a result of expressions (2.2.1) and (2.2.5). 

Once the e(i) = emax is set, we can say that the rule (o, d, d) is placed in working memory. 
The reason for this statement is that, if we send input x(l) = a x(2) = e the output y(l) will 
be retrieved from one of the locations of LTM with the highest level of residual excitation among 
locations for which gx(l, i) = a. Locations for which gx(l, i) ^ a will have s(i) = 0 due to expres- 
sion (2.2.1). Accordingly, due to expression (2.2.2), for these locations se(i) = 0 independently 
of the level of residual excitation. This effect of executing the most recent rule placed in working 
memory will last until e(i) decays below a certain level, eloss. For this model eloss = 1 and the 
modulating coefficient, a, in expression (2.2.2) must be less than l/emax = .5. Due to expression 
(2.2.5), the time of decay of e{i) from emax to eloss is 

(1)     tmax = In (eloss /emax)/ In (c) = - \n(emax / eloss) • ln(l - 1/r) >  r • ln(emax/eloss) 
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where c = 1 — 1/r, and, for this model, emax/eloss = 2.   We can transform this qualitative 
explanation into a rigorous proof by verifying the following statements: 

Si. At 1/ = v\ (the beginning of examination) LTM of AS contains at least once any fixed rule 
(addr, din, dout) eAxD'xD' where D' = D - {e}. Formally, 

(2) V (addr, din, dout) € AxD'xD' 3i(gx(\,i),gx(2,i),gy(l,i)) = (addr, din, dout)) 

This statement follows from expression (2.2.6) and the definition of the experiment of 
training. During training wen = 1, so the training sequence containing all fixed rules is 
tape-recorded in LTM. 

52. At v — v\ all location of LTM containing fixed rules have e(i) > 0 due to expression (2.2.7). 
Let tmax > v2 — i>0. From expression (1) we find that to guarantee that e(i) = emax = 2 
will not decay below eloss during the entire experiment of training and examination it is 
sufficient to have tmax > v2 — vO. This condition is satisfied if 

(3) r >  Train = (i/2 — i/0)/ln(eloss/emax)  =  (v2 — i/0)/ln2 

53. Suppose in the course of examination we test AS only in the read mode. That is, we send 
only inputs addr, din with din = e. Then y(l) will be retrieved from a location ird for which 
gx(\,ird) = addr and e(ird) has the highest level among all locations with gx(l, i) = addr. 
If T > rmin, it is guarantied that e(ird) > eloss, so y(l) will be retrieved from the location 
in which a certain data, din ^ e was recorded most recently and, therefore, y(\) = din. 
This is exactly how GRAM would react to this input. 

54. Let vw and i/r, where ur > i/w be some "write" and "read" moments in the course of 
examination, such that x(l)(vw) = addr, x(2)(yw) = din ^ e and x(l)(vr) = addr, 
x(2)(ur) = e. Let there be no other input between vw and vr with the same x(l) and 
different x(2) ^ e. Due to expression (2.2.5) e(i)(uw -f- 1) = emax = 2 for all i 6 {i : 
gx(l,i) = addr,gx(2,i) = din). Accordingly, due to what was said in S3, y(\)(vr) = din. 
Again, AS reacts exactly as GRAM. 

This proves the theorem, since all other possible cases of "writing to working memory" and reading 
from this memory can be reduced to S3 and S4. D 

Why, in this model should the data loss level, eloss, be set at 1? The reason for this is that the 
residual excitation e(i) = 1 can be created in a wrong location by x(2) = din ^ e. Accordingly, 
only the residual excitation higher than 1 can be relied upon. The e(i) > 1 can only be the 
result of decay from level emax=2. The latter level can be set only by the input x(l) = addr, 
x(2) = din ^ e. This input corresponds to writing non-empty data, din ^ e, to an address, addr, 
of GRAM. 

5.3    Why traditional learning systems cannot learn to simulate GRAM 

We are going to explain why many traditional learning systems cannot learn to simulate a GRAM. 
Intuitively, the obvious cause of this limitation is the loss of information about the relative order 
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of observed input events. To formalize this intuition, consider a system M the work of which is 
represented in the following general form: 

(4) y{y)  - f(x(v), x{y - 1),..., s(0), y(v - 1),..., y(0)) 

where x(v) G X, and y(v) 6 Y). 

The work of all learning systems we are aware of can be represented in this general form. Usually, 
the I/O sequence, x(v - 1),..., x(0), y(v - 1),..., t/(0) is transformed into a state of LTM by a 
learning algorithm. The output, y(v), is then computed from the current input, x(v), and the 
current state of LTM. Some systems also use different kinds of STM. (For example, in the case of 
Model 2.2, the STM was represented by the E-state array e(:).) In the general form (4), we do 
not need the concepts of LTM, and STM, and the concept of a learning algorithm. Theoretically, 
a learning algorithm that loses information can only reduce the possibilities of system M. Our 
goal is to show that this is happening in many traditional learning systems. 

Definition. We will say that system M loses information about the order of events in the input 
sequence if there exist i/x and 1/2, where v > 1/2 > v\ > 0, such that for any a, 6 € X with a^b the 
output of system M at the moment v, y(v), is the same for x(vx) = a, xfa) = 6, and x(v\) = 6, 
x(v2) = a. That is if inputs at vx and u2 change places. 

Theorem 2. No system M satisfying the above definition can learn to simulate GRAM. 

Proof We prove this theorem by contradiction. It is sufficient to use a specific example of GRAM 
with A = {1,2}, and D = {a, b,s} discussed in Section 4.2. It is easy to see that if M cannot 
simulate this GRAM it cannot simulate a GRAM with bigger address a nd data sets, because a 
bigger GRAM can always simulate a smaller GRAM. Suppose M satisfies the above definition and 
nevertheless can simulate the specified GRAM. Let us make the following test. At 1/ = i/u we send 
input x(i/i) = (addr, din) (i/\) = (l,a), and at 1/ = 1/2, we send input 1(1/2) = (addr,din)(i/2) = 
(1,6). We make sure that no other input between v\ and V2 has addr = 1, and din ^ e. At the 
moment v we send input x(v) = (addr, din)(v) = (l,e). According to the assumption that M 
simulates the described GRAM the output y(v) must be equal to 6, since din — b was written to 
addr = 1 last. Let us change the order of inputs at vx and i/2. Now x(v\) = (addr, din)(i/i) = (1,6), 
and x(i/2) = (addr, din)(v2) = (l,a). According to the definition of M the output y(v) = dout(v) 
must be the same as before, that is, it must be y(i/) = dout(v) = 6. However, the output of the 
GRAM is now dout(v) = a since din = a was written to addr = 1 last. This contradiction proves 
the theorem. D 

Remark. Using computer simulation, we tested a number of traditional learning systems 
against the loss-of-information-about-order criterion specified by the above definition. We found 
that all tested systems satisfy this criterion, and hence they cannot learn to simulate GRAM. For 
example, we claim that this result holds for all systems with distributed associative memory and 
all systems that employ various types of gradient-descent and statistical-optimization learning 
algorithms. We leave it to the researchers who study these types of learning systems to rigorously 
prove this interesting negative result. 

Recall what was said in Section 1.3. The GRAM simulation problem offers an important 
falsification test - much more difficult than the famous XOR problem. 
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6    Learning to simulate finite-state machines (Task 2) 

6.1 The main steps for solving Task 2 

We proceed in the following steps: 

Step 1. Define the concepts of a deterministic and probabilistic combinatorial machines and 
the notion of behavior of type 4. 

Step 2. Prove that Model 2.2 with a = 0, TO = 1, p = 1, and sufficiently big LTM (n as big 
as needed) can be trained to simulate, in principle, any probabilistic combinatorial machine 
with rational probabilities. 

Step 3. Define the concepts of a deterministic and probabilistic unite-state machines and the 
notion of behavior of type 3. Show that any finite-state machine can be implemented as a 
combinatorial machine with a one-step delayed feedback. 

Step 4. Define the problem of learning to simulate a behavior of type 3. 

Step 5. Prove the theorem of Task 2 using Model 2.2 with a = 0,m = 2,p = 3, and n big 
enough to store the program of the simulated Turing machine. 

6.2 The concept of a combinatorial machine: behavior of type 4 

Definitions: 

1. A deterministic combinatorial machine is a system M=(X,Y,/), where 

• X is a finite nonempty set of input symbols called the input set or input alphabet. 

• Y is a finite nonempty set of output symbols called the output set or output alphabet. 

• / : X —► Y is a function called output function. 

The work of M is described in discrete time v as follows : 

(i) wM = /(*M); 

where, y{y),b € Y, and x{y),a G X. 

2. A probabilistic combinatorial machine is a system MP=(X,Y,/P), where 

• X and Y are the same as before. 

• fp : X x Y —* [0,1] is the function of output conditional probabilities satisfying the 
condition: for all x € X  S(yeY) fp(x^v) = *• 

The work of Mp is described in discrete time v as follows : 

(2) P( y{u) = b | x[u) = a ) = /„(a, b); 
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where, P( B \ A ) is the conditional probability of event B given event A, 
y(i/), b £ Y, and x(v), aeX. 

Note. A deterministic combinatorial machine is an extreme case of a probabilistic combi- 
natorial machine with fp(a,b) G {0,1}. 

3. A behavior that can be represented in terms of a combinatorial machine will be called a 
behavior of type 4- In psychological terms, this behavior can be interpreted as the classical 
S —> R (stimulus —> response) behavior. 

Note. We use a classification of the general types of behavior and the levels of com- 
puting power similar to Chomsky's hierarchy of formal languages [5]. We added type 4 to 
refer to combinatorial machines. As is known, types 3, 2, 1, and 0 correspond, respectively, 
to finite-state machines, context-free grammars or push-down automata, context-sensitive 
grammars, and Turing machines. The lower the type number, the higher is the level of 
computing power needed to simulate the corresponding type of behavior. In what follows, 
we are interested only in types 4, 3, and 0. 

6.3    Two examples of combinatorial machines 

To get used to the concepts of a deterministic and probabilistic combinatorial machine it is helpful 
to understand in details the two simple examples shown in Figure 8 a) and b). 

—- a b cl 
1 3 2 

a b c b a c b c b b a 
1 3 2 2 1 2 1 2 1 1 2| 

a) b) 

Figure 8: Tables of associations corresponding to a) deterministic, and b) probabilistic combina- 
torial machines. 

a) Example of a deterministic combinatorial machine: 

Let M = (X, Y, /) be a deterministic combinatorial machine with the input alphabet 
X = {a, 6, c}, the output alphabet Y = {1,2,3} and the function / : X —► Y repre- 
sented as the set of pairs, / = {(a, 1), (6,3), (c, 2)}. It is useful to visualize / as the table, 
call it the table of associations, shown in Figure 8 a. 

At each moment v, the work of machine M can be described with the use of the following 
algorithm that interprets the table of associations. We will refer to such an algorithm as an 
interpretation procedure: 

1. Take an input symbol x(v) 6 X. For example, let x(v) = b. 

2. Find the column, i with the matching symbol in the upper row. In this case, column 
i = 2 has symbol b in the upper raw. 
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3. Take the symbol from the second raw of the i — th column and send it to the output. 
In this case, i = 2, and y{v) = 3. 

b) Example of a probabilistic combinatorial machine: 

Let Mp = (X, Y, fp) be a probabilistic combinatorial machine with the input alphabet 
X = {a, 6, c}, the output alphabet Y = {1,2,3} and the function of output conditional 
probabilities, fp : X x Y —> [0,1], represented by the table shown in Figure 8 b. Let I(x) 
be the set of columns with symbol x in the first row, and let I(x, y) be the set of columns 
with symbol x in the first row and symbol y in the second raw. The conditional probability 
is determined by the following expression: 

(3) P{ y{v) = b | x(v) = a ) = /„(a,6) = |I(a,6)|/|I(a)|; 

Table of Figure 8 b gives the following values for fp: 

/p(a, 1) = |I(a, l)|/|I(a)| = 2/3, where 1(a) = {1,5,11}, and I(a, 1) = {1,5}. 

/p(a, 2) = |I(a, 2)|/|I(o)| = 1/3, where 1(a) = {1,5,11}, and I(a, 2) = {11}. 

fp(a,c) = |I(a, l)|/|I(a)| = 0/3, where 1(a) = {1,5,11}, and I(a,c) = {}. 

/p(6,l) = |I(6,1)|/|I(6)| =3/5, where 1(6) = {2,4,7,9,10}, and 1(6,1) = {7,9,10}. 

/p(6,2) = |I(a, 2)|/|I(6)| = 1/3, where 1(6) m {2,4,7,9,10}, and 1(6,2) - {4}. 

/p(6,3) = |I(a,3)|/|I(6)| = 1/3, where 1(6) = {2,4,7,9,10}, and 1(6,3) = {2}. 

/p(c, 1) - |I(c, l)|/|I(c)| - 0/3, where 1(c) = {3,6,8}, and I(c, 1) = {}. 

/p(c,2) = |I(c,2)|/|I(c)| = 3/3, where 1(c) = {3,6,8}, and I(c,2) = {3,6,8}. 

/p(c,3) = |I(c,3)|/|I(c)| = 0/3, where 1(c) - {3,6,8}, and I(c,3) = {}. 

The following probabilistic interpretation procedure simulates the described machine: 

1. Take an input symbol x{v) £ X. For example, let x{v) = 6. 

2. Find the set 1(6) = {2,4,7,9,10}.   Randomly select an element, ir(t from 1(6).   Let 
ird = 7. 

3. Read the symbol from the second raw of the ird = 7 column and send it to the output. 
In this case, y(v) = 1. 

DEFINITION. The columns of the table of associations are (interchangeably) called associa- 
tions—rules—productions—commands of a combinatorial machine. 

Unlike the case of GRAM, the behavior of a combinatorial machine is fixed and is completely 
represented by its rules=commands. In the case of a deterministic combinatorial machine, the 
number of commands is N% = |X|. In the case of a probabilistic combinatorial machine, the 
number of commands is N£ = |X| • |Y|. Note that, in the case of a probabilistic combinatorial 
machine, the size of the table of associations must be larger than N£ to represent the probabili- 
ties. Only the rational probabilities, m/n, - where m is a nonnegative integer, and n is a positive 
integer - can be represented in this way. 

2:^ 



6.4    Learning behavior of type 4 

In what follows we use experimental setup shown in Figure 9. We assume that PEM is organized 
as Model 2.2 with a = 0, m = 1, and p = 1. Since a = 0, the STM of the model is turned off and 
the values of e(:) and c make no difference. As in Section 5.1, we divide an experiment into two 
stages: training and examination. 

PEM 

* Teacher 

xy 
| sei 

-K>- yN 

yT 

Figure 9: Experimental setup for training a PEM to simulate a combinatorial machine. 

Training. Training starts at v — v0 and lasts until v = v\ — 1, where v\ is the first moment of 
examination. The following conditions are satisfied: 

1. sei = 1, and, accordingly, xy = yT. 

2. At the beginning of training, LTM is empty. That is, for i = 1 : n gx(l,i){vQi) == e; 
gy(l,i)(i/0) = e, and wptr(i/0) = 1. 

3. Learning is enabled:  wen = 1.  We assume that the LTM is big enough to store all 
training sequence. That is n > v\ - I/O. 

Examination. At this stage, sei = 0, and xy = y. For simplicity, we assume that PEM does 
not learn during this stage, that is, wen = 0. This requirement is not necessary. If n is big 
enough, PEM could continue recording data in its LTM. 

Theorem 3. Let M = (X, Y, f) be a deterministic combinatorial machine. Let each command of 
these machine be demonstrated at least once during training. At the stage of examination PEM, 
specified above, will correctly simulate M. 

Proof. Model 2.2 with a = 0, m = 1, and p = 1 performs the probabilistic interpretation procedure 
described in Section 6.3, where the table of associations is represented as gx(l,:), gy{l,:). Namely, 

1. Expressions (2.2.1) and (2.2.3) select the set of matching locations in gx{\,:) (DECODING, 
and CHOICE). Expression (2.2.2) has no effect: se(i) = s(i) because a — 0. 

2. Expression (2.2.4) reads the symbol from the selected location of gy(l,:). 

Due to the specified conditions of training, at the beginning of examination, v = vl, the table 
(px(l,:), gy{\, 0)(^1) includes at least once each command of machine M. This proves the theorem. 
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Note. To accomplish Task 2, it is sufficient to prove the above theorem for the case of a 
deterministic combinatorial machine. However, it is interesting to mention that if: a) M is a 
probabilistic combinatorial machine, b) training lasts long enough, and c) symbols from X are 
presented with equal probabilities, then the resulting table of associations ((gx(l, :),gy(l, :))(^1) 
will correctly approximate the conditional probabilities of M. The longer the training the better 
will be the approximation. 

6.5    The concept of a finite state machine: behavior of type 3 

Definitions: 

1. A deterministic finite-state machine is a system M=(X,Y,Q,/), where 

• X is a finite nonempty set of input symbols called the input set or input alphabet 

• Y is a finite nonempty set of output symbols called the output set or output alphabet 

• Y is a finite nonempty set of state symbols called the state set . 

• / : X x   Q —> Q x Y is a combined next-state and output function. 

Note. Traditionally, /, is divided into two functions, fq:Xx Q —> Q and fy : 
Xx Q->Y called, respectively, the next-state function and the output function. For 
our purpose, it is more convenient to combine these two functions into a single function. 

The work of M is described in discrete time v as follows : 

(4) (q(v+i)M»))-ftor), «M)i 

where, y(v) £ Y, and x(i/),a € X. 

2. A probabilistic finite-state machine is a system MP=(X,Y,Q,/P), where 

• X, Y, and Q are the same as before. 

• /p : X x Q x Q x Y —► [0,1] is the combined function representing the next-state and 
output conditional probabilities. fp satisfies the condition: for all (x, q) G X x Q 

£((9\y)€QxY)/(a:'0i9,»2/) = L 

The work of Mp is described in discrete time v as follows : 

(5) P(q(v+l) = c, y{u) = d \ x(v) = a, q(y) = b)= /p(a,6,c,d); 

where, x(i/), a € X, q(v + 1), q(v), c, 6 € Q, and y(v), d € Y, 

Note. A deterministic finite-state machine is an extreme case of a probabilistic finite-state 
machine with /p(a, 6, c, d) £ {0,1}. 

3. A behavior that can be represented in terms of a finite-state machine is called a behavior of 
type 3. 
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6.6    Behavior of type 3 as a behavior of type 4 with a feedback 

11 is easy to show that any behavior of type 3 can be represented as a behavior of type 4 with a 
one-step delayed feedback. Let M=(X,Y,Q,fl) be a finite-state machine, and let Ml=(Xl,Yl,f2) 
be a combinatorial machine, such that XI = X x Q and Yl = Q x Y. The work of Ml is described 
as follows: 

xl(v) yl(v) 

x2(v+l)=y2(v) 
Ml 

y2(v) 

T=l 

Figure 10: Replacing a finite-state machine by a combinatorial machine with a one-step delayed 
feedback. 

(6) (yl(v),tfl{v)) = fl(xl(v),*2(v)); 

where x\(v) € X, x2(v) <E Q, y\{y) G Y, and y2{v) € Q. 

Let us introduce a one-step delayed feedback from output y2 to input x2. We have 

(7) *2(i/)=y2(i/-l); 

Renaming xl as x, x2 as q, y\ as y, fl as /, and substituting (7) into (6) we get expression 
(4) describing the work of the finite-state machine M. Since function fl can be selected arbitrar- 
ily, any deterministic finite-state machine can be implemented as a deterministic combinatorial 
machine with a delayed feedback. It is easy to see that the same holds for probabilistic machines. 

7    Learning to simulate behavior of type 0 (Tasks 3 and 4) 

7.1    The main steps for solving Task 3 

We proceed in the following steps: 

Step 1. Define the concept of a Turing machine and the notion of behavior of type 0. 

Step 2. Show that the tape of a Turing machine can be replaced by a GRAM. 

Step 3. Show that system of Figure 12 can be trained in an experiment of supervised learning 
to simulate the finite-state part of any Turing machine. 

Step 4. Prove the theorem of Task 3. 
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7.2    The concept of a Turing machine: behavior of type 0 

A Turing machine is a finite-state machine interacting with an external read/write memory - 
traditionally, a tape divided into squares (Figure 11). Theoretically, the tape has infinite length. 
However, as was explained in Section 1.2, this requirement is not important from the practical 
viewpoint. Even a finite tape cannot be treated as a finite-state machine because the number of 
states of such a tape explodes exponentially with the number of squares. 

A classical Turing machine has a read/write head the position of which indicates the position 
of a single square of the tape called the scanned square. The address of the scanned square doesn't 
need to be defined explicitly as it is done in the case of a RAM, or a GRAM (Section 4.1). At 
each step the Turing machine can perform the following elementary operations: 

scanned square 
TAPE /   

n-r~nTärbi~rrn 
AT 

HEAD 

read 
1  t write 

move 
xl     - ■    vl 

f 
1       * 

y2 
x2 y3 

s(v) 
-| V -i L s(v+l) 

Figure 11: The general architecture of a Turing machine 

1. Read a symbol from a scanned square. 

2. Write a symbol into the scanned square. 

3. Move the head one square to the right, one square to the left, or stay in the same square. 

4. Change the current state of mind (see definition below) to the next state of mind. 

Definition.    A finite-state part of a Turing machine is a deterministic finite-state machine 
T=(X,Y,S,f,sO), where 

X is the set of external symbols read from the tape; 

S is the set of internal symbols representing the states of mind of a Turing machine. This set 
includes a special halt symbol H. A Turing machine stops when it enters the halt state. 
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50 G S is a symbol representing the initial state of mind of the Turing machine. 

y = SxMxXis the set of output symbols representing the reactions of the Turing machine. 
This set is the product of the three sets: 

S is the set of the next states of mind (the same as the set of the current states of mind). 

M = {R, L, 5} represent the movements of the head, where R, L, and S mean, respectively, 
move one square to the right, move one square to the left, and stay in the same square. 

X is the set of symbols that can be written on tape (the same as the set of symbols that 
can be read from the tape). 

/ : X x S —► Y is the function represented as the set of quintuples called productions or commands 
of the Turing machine. 

A behavior that can be represented in terms of a Turing machine will be called a behavior of 
type 0. 

7.3    Learning to simulate the finite-state part of a Turing machine 

It is convenient to redraw the lower part of Figure 4 including system AM, nuclei NM, and Teacher 
as shown in Figure 12. We also included the one-step delayed speech feedback s{v) —► s{v — 1). 
Because of this feedback, system AM needs to work only as a combinatorial machine. 

Figure 12: Training system AM of Figure 4 to execute the program of a Turing machine. 

Remarks 

1. It should be emphasized that the introduction of the speech feedback, s{v) —* s{v — 1), 
allows us to treat the states of mind, s(i/), of the simulated Turing machine as observable 
variables available for learning. This makes it theoretically possible to learn to simulate 
the finite-state part of any Turing machine. The corresponding learning problem would be 
theoretically unsolvable if the states were treated as hidden variables. 
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2. In traditional theories of symbolic learning, the internal states of the teacher (the target 
machine) are treated as hidden variables the structure of which must be uncovered by a 
learning algorithm. We argue that this traditional approach is too restrictive when it comes 
to the problem of human learning. A human learner doesn't view a human teacher as an 
absolutely black box. The black box approach to learning leads to implications, such as, 
e.g., the Gold theorem [16], that are not supported by observations. As humans, we have 
a great deal of built-in information about the internal states of other humans. See Section 
7.8. 

To prove the theorem of Task 2 we will assume that system AM in Figure 12 is organized 
as Model 2.2 with a = 0, m = 2, and p = 3. As in Section 6.4, we divide the experiment into 
training and examination. 

Training. Training starts at v — z/0 and lasts until v = v\ — 1, where v\ is the first moment of 
examination. The following conditions are satisfied: 

1. sei = 1, and, accordingly, xy(:) = yT(:). 

2. At the beginning of training, LTM is empty.   That is, for i = 1 : n gx(l,i)(v0) = 
gx(2,i)(v0) = e; gy(l,i)(vQ) = gy(2,i)(v0) = gy(3,i)(iA)) = e, and wptr(uO) = 1. 

3. Learning is enabled: wen = 1.  We assume that the LTM is big enough to store all 
training sequence. That is, n > v\ - i/O. 

Examination. At this stage, sei = 0, and xy(:) = y(:). For simplicity, we assume that AM 
does not learn during this stage, that is, wen = 0. This requirement is not necessary. If n 
is big enough, AM could continue recording data in its LTM. 

Theorem 4. System AM defined above learns to simulate the finite state part of any Turing 
machine, if each command of this machine is presented at least once at the stage of training. 

Proof The theorem follows from the definition of a finite-state part of a Turing machine (Section 
7.2 ), the Theorem 3 of Section 6.4, and the fact that any finite-state machine can be represented 
as a combinatorial machine with a one-step delayed feedback (Section 6.6). D 

7.4    Replacing TAPE and HEAD by a modified GRAM 

Let us compare the (TAPE,HEAD) system of the Turing machine shown in Figure 11 with the 
external system (W,D) shown in Figure 5. The read output is similar to dout output, the write 
input is similar to din input. However, the move input is different from addr input. To resolve 
this problem we need to slightly improve system (W,D) so it will be to correctly react to move 

iibols, move € M = {L,R,S}. The easiest way to achieve this goal is to slightly modify the 
formal description of GRAM from Section 4.1. Instead of expressions (4.1.1) and (4.1.2) we will 
use the following expressions: 

(1) if (move == R) addr = addr + 1; 
else if (move == L) addr = addr — 1;   end 
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(2) 

(3) 

if (din == e)  dout = mem(addr); 

else dout = din; mem(addr) - din;   end 

Expression (1) can be interpreted as an addition of a transducer, TR, shown in Figure 13 to 
system (W,D) of Figure 5 a). The transducer works as a bidirectional counter that increments 
when move = R and decrements when move = L. The input move = S has no effect. 

External system 

D 

doutu 

addr TR move 

din 

»- 

Figure 13: Adding transducer, TR, to make system (W,D) behave as (HEAD, TAPE) of a Turing 
machine in Figure 11. 

7.5    Computations with the use of external tape 

Consider the following experiment with the robot of Figure 3. Assume that the transducer TR 
shown in Figure 13 is introduced at the output of centers NM1. This output will produce the 
move € M = {L, R, S} symbols of the simulated Turing machine. 

Training. At this stage NS.sel = 1. The robot's eye is open and the motor system AM sees a 
symbol dout read from the tape (screen). The teacher forces the robot to perform several example 
of an algorithm with different input data presented on tape. The examples are selected in such a 
way that each command of simulated Turing machine is executed at least once. 

Examination. At this stage, NS.sel = 1 - the eye is open. The teacher presents new data 
on tape, positions the robot's eye in the first square (traditionally, the leftmost square), and sets 
the robot's initial state of mind by forcing the robot to utter the initial symbol. From this moment 
on the teacher does not interfere and the robot performs computations automatically. 

Theorem 5. Let Model 2.2 be used as system AM of Figure 8. There exist parameters of AM 
such that after the described Training the robot of Figure 3 passes the described Examination. 

Proof The result follows from the Theorem 4 of Section 7.3. D 
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7.6 Computations with the use of imaginary tape 

In Section 5.2, we have shown that system AS of Figure 3, organized as Model 2.2, can learn 
to simulate any GRAM. The minimum length of the training sequence is m • n, where m is the 
number of data symbols and n is the number of locations of the simulated GRAM - each data 
symbol needs to be written at least once in each location of the GRAM. For example it takes 
2 • 100 = 200 steps to learn to simulate a tape with 2 symbols and 100 locations. This is a 
very short training sequence as compared to the number of states of the GRAM. The latter is 
mn = 2100 in the case of the GRAM simulating the above tape. 

Using the described property of system AS we can enhance the experiments of training and 
examination described in the previous section to allow the robot to learn to perform computations 
without seeing the external tape. Let us modify the experiments of training and examination as 
follows. We assume that the robot will never use more than n locations of the external tape. 

Training. This stage is similar to the training in the previous section except, the robot must be 
forced by the teacher to perform all move commands in each of the n locations of the tape. This 
means that the length of the training sequence increases roughly proportionally to n. (There is 
no combinatorial explosion of the type mn.) 

Examination. This stage is divided into two parts. 

1. At this stage, NS.sel = 1 - the eye is open. The teacher presents new data on tape, positions 
the robot's eye in the first square. 

2. The teacher forces the robot to scan new data, return to the first square, and utter the initial 
symbol. From this moment on NS.sel = 0 (the eye is closed), the teacher does not interfere, 
and the robot performs computations using the imaginary tape simulated by system AS. 

Theorem 6. Let Model 2.2 be used as both system AS and system AM of Figure 3. There exist 
parameters of AS and AM such that after the described Training the robot of Figure 3 passes the 
described Examination. 

Proof. The result follows from the Theorem 1 of Section 5.2 and the Theorem 4 of Section 7.3.   D 

7.7 The C++ program EROBOT (Task 4) 

The C++ program called EROBOT allows the user to perform the experiments described in 
sections 7.5 and 7.6 with the robot of Figure 3. The simulations confirm that the corresponding 
theorems do hold. 

The main screen of the program EROBOT performing the parentheses checker algorithm [20] 
is shown in Figure 14. The screen displays three dialog boxes representing the systems: (1) the 
external system (W,D) - the left box, (2) the mental imagery system AS - the upper right box, 
(3) the motor control system AM - the lower right box. The user can perform a broad range 
of experiments with the program and teach it to perform algorithms representable as Turing 
machines with up to 1000 commands. 
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Figure 14: The main screen of the program EROBOT. 

7.8    The myth that behavior of type 0 cannot be le«arned 

As mentioned in Remark 2 in Section 7.3, some theories of learning equate the problem of learning 
with the problem of deciphering the structure of a target machine (teacher) observed as a black 
box by another machine (learner). Usually the target machine is treated as a grammar that has 
to be identified from the set of sentences [16, 15]. With this definition of learning, the lea: 
cannot learn to simulate the behavior of the teacher of the type higher than type 3 (finite-state 
grammars). 

This general result seems to contradict to our Theorem 1 of Section 5.2 showing that the 
behavior of a GRAM can be learned - a GRAM is a system of type 0. In fact, there is no 
contradiction. System AS in Figure 7 (learner) does not treat GRAM (teacher) as a black box. 
Defined as Model 2.2, system AS has some built-in information about the external system (W,D) - 
namely the effect of recency associated with the decay of e(i) matches some fundamental physical 
properties of (W,D). Accordingly, the black box limitations do not apply. We argue that the same 
holds for the phenomenon of human learning. A human learner does not treat a human teacher, 
and other external systems as black boxes. It expects these systems to have certain properties. In 
fact, evolution created biological systems in such a way that they can survive in the real physical 
world. 

Consider the sentence: */ know how you feel". It would be impossible to teach people the 
meaning of such concepts as "pain", "pleasure", "imagine", iLthink", "wait", etc., if our brain had 
absolutely no built-in knowledge about these concepts. A human teacher and a human learner 
have similar brains, so the learner knows a great deal about the internal states of the teacher. 
The whole notion of the black-box-learning is a fallacy. 

IMPORTANT. If the behavior of GRAM can be learned, then, according to Theorem 6 of 
Section 7.6, any behavior of type 0 can be learned. The computer simulation confirms this criti- 
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cally important theoretical result. The result changes the whole attitude toward the problem of 
human symbolic learning. It means that to be able to learn anything (to be a learning system 
universal in Turing sense) the human neocortex must use a universal learning algorithm close, in 
a sense, to the complete memory algorithm used in Model 2.2. Trying to invent a "supersmart" 
learning algorithm leads to principal limitations on what can be learned. We argue that the 
principal limitations of the traditional symbolic learning systems stem from this pitfall. 

8    On a neural implementation of primitive E-machines 
(Tasks 6-9) 

8.1    An example of an associative neural network with temporal mod- 
ulation 

It is helpful to have an intuitive link between E-machines and neural networks. Such a link provides 
a source of neurobiological heuristic considerations for the design of the models of E-machines 
and the source of psychological heuristic considerations for the design of the corresponding class 
of neural models. Figure 15 shows the general architecture of a homogeneous neural network 
corresponding to a PEM. The architecture was discussed in [7, 9]. 

i-th location 
oflLTM 

\ 
S2104) 

Input LTM 

modulation 
xel    next e-state 

modulation 
next e-state 

wnner-take-all 
choice 

i-th location 
ofOLTM 

S43(k.i) 

Output LTM 

Figure 15: An example of a neural implementation of a primitive E-machinc 

Large circles with incoming and outgoing lines represent centers - elements that are assigned 
certain coordinates in the network. A center with incoming and outgoing lines can be interpreted 
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as a neuron with its dendrites and axons, respectively, or a network functionally equivalent to a 
"large neuron". Small circles represent couplings - the elements whose position in the network is 
described by a pair of centers communicating through this coupling. A coupling can be interpreted 
as a synapse or a circuit functionally equivalent to a "large synapse". The white and the black 
small circles represent excitatory and inhibitory synapses, respectively. In what follows we ns< 
the terms neuron and synapse instead of the terms center and coupling, respectively 4. 

Figure 15 displays six sets of neurons (Nl, N2, N3, N4, N5, and N6) and 10 sets of synapses 
(S21, S22, S25, S52, S32a, S32b, S33, S36, S63, S43). 

Nj(i) is the i-th neuron from the y-t h set. Skja(n,m) is the synapse between neurons Nj(m) and 
Nk(n), where 'a7 is an additional index describing the type of synapse (in case there are several 
different types of synapses between the sets of neurons Nj and Nk). The V substituted for an 
index indicates the whole subset of elements (variables) corresponding to the entire set of values 
of this index. S21(i,:)=(S21(i,l),...S21(i,nl)). S21(:,:) is the same as S21, etc. 

The diagram depicts three types of synapses with E-states: el(:),e2(:), and e3(:), serving 
different purposes. e2(:) is similar to the e(:) of Model 2.2; el(:) describes the effect of lateral 
modulation that allows the network to decode temporal sequences; e3(:) describes spreading 
residual excitation producing the effect of broad temporal context. Remark. This neural network 
corresponds to a PEM more complex than Model (2.2) [7, 9]. 

The Input LTM and the Output LTM are implemented, respectively, as the input, and output 
synaptic matrices, 521 (:,:) and S4(:,:). The network also has some intermediate synaptic mem- 
ory called Structural LTM (SLTM). This memory corresponds to modifiable connections among 
neuron decoders, N2, and neuron encoders, N3. 

Layer N3 implements a winner-take-all (WTA) choice. The layer has local excitatory feed- 
backs, S33, and a global inhibitory feedback via neuron N6 - the, so-called, inhibit-every one-and- 
excite-itself principle. The WTA choice could also be implemented by using inhibitory synapses 
S33(i2,il) with gains > 1.0 for all synapses except those with i2 = i\ - the, so-called, inhibit- 
everyone-but-itself principle. In the next section we explicitly describe the dynamics of the WTA. 
In the discussed case analytical solution is possible. 

8.2     The dynamics of the winner-take-all choice 

To explore the dynamics of the winner-take-all (WTA) layer let us consider a simplified version of 
the network of Figure 15 shown in Figure 16. Unlike the network of Figure 15 the simplified model 
does not have slow temporal modulation (the E-states). The differential equations describe the 
the fast dynamics of the postsynaptic potential of neurons N2. All other elements are described 
by algebraic equations. Neurons N2 are treated as first-order linear threshold elements with the 
threshold equal to zero. To produce a step-wise (E-machine-like) performance the model has a 
periodic inhibitory input xinh- The period of this input, call it Tinh, must be much larger than 
the time constant of N2, r (Tin/i ;» r) to allow the transient process to reach its stable state 
during each step. Each neuron of layer N2 has an excitatory feedback with the gain a, and an 
inhibitory feedback with the gain ß. gfj and gy

ki denote the gains of synapses S21(i,j) and S32(k,i), 
respectively. a\ is the output of neuron N2(i). 

4 We use the term coupling rather than the traditional term connection to emphasize that, in general, we treat 
a synapse as a complex nonlinear dynamical element with E-states, rather than just a connection with a variable 
weight. 
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Figure 16: A simplified version of the network of Figure 15 illustrating the WTA dynamics. 

j=i 

dui 
T— + Ui = Si + a-di-q 

di = 
Ui if u{ > 0 

otherwise 

q = ß^di + Xinh 
ML 

71 

yk = Y.9*'di 

(1) 

(2) 

(3) 

(4) 

(5) 
t=l 

Let all Xj and xlnh (and, therefore, all s,) be step functions of time. Then, for all active neurons 
from layer N2 (the neurons for which Ui > 0), the solution of equations (2)-(4) can be represented 
in the following explicit form: 

u, = &—^(e* - 1) + (ti? - ul) 
a — 1 

/it 

+ 
1 + ß-ni — a 

where 

• rii is the number of active neurones from N2. 

• v% (i = 1, ...n) are the values of u, at t=0. 
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sav and v%v are the average values of Si and tz° for all active neurons from N2. That is, 

Parameters a and 6 in ea* and e~H are as follows: 

a = (a - l)/r (9) 

b=(l + ß-m-a)/T (10) 

Let 1 < a < 1 + ß. Then a > 0 and 6 > 0. According to expression (9), neurons N2[i] with 
Si > sav increase their potentials ttj. Neuron N2[i] with Si < sav decrease their potentials and 
switch off once it, < 0. This reduces ni and increases sav making s< < sav for some additional 
neurons from N2. Eventually, only neurons with Si = max(si, ...sn) will have ut > 0. it can be 
shown that this equilibrium is unstable if n» > 1. Therefore, in the presence of noise, at the end 
of the transient response there will be only one winner randomly selected from the set of neurons 
with the maximum level of Sj. 

8.3 The C++ program WTA 

The WTA program simulates the dynamics of a winner-take-all layer described by equations 2, 3, 
and 4. The main screen of the program is shown in Figure 17. The upper dialog box displays the 
periodic inhibitory input, xinh- The lower dialog box displays the similarity front, s (yellow lines), 
the positive postsynaptic potential, u, of competing neurons (magenta lines), and the negative 
postsynaptic potential of the neurons that are turned off by the inhibitory feedback (red lines). If 
both a and ß are bigger than one, only one neuron with the maximum Si wins the competition. 

Remark. We are currently working on the extension of the WTA program that would allow 
the user to explore the competition of spiking neurons. As is known, the winner-take-all choice 
can be efficiently implemented in a layer of spiking neurons. Besides being biologically more 
consistent, the latter approach has a number of information processing advantages for the neural 
implementation of E-machine. 

8.4 What is a neurobiological interpretation of E-states? 

Theoretically, any dynamic variable with a time constant significantly larger than a "psycholog- 
ical" time step, At « 10 — 100msec, can provide a physical implementation of a certain type of 
phenomenological E-state. The psychological time step can be contrasted with a uneurobiolog- 
ical" time step, dt —► 0. For the purpose of a real time computer simulation, dt can be on the 
order of dt = 1 — 10/zsec. We believe that cognitive-level models should be made as independent 
of the fast neural dynamics as possible. 

The majority of the differential equations used in traditional ANN models can be interpreted 
as describing either the accumulation of chemicals in cellular compartments or the accumulation of 
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Figure 17: The main screen of the WTA program. 

charges on the surfaces of cellular membranes. The latter dynamics have a small time constant (in 
the microsecond range) and cannot be used to implement E-states. In contrast, the accumulation 
of rliemicals may have much bigger time constants. We argue however, that the slow dynamics 
of chemical concentrations per se does not provide the mathematical sophistication needed for 
implementing nontrivial next E-state procedures. 

In what follows we discuss a possibility of connecting the dynamics of phenomenological In- 
states with the statistical conformational dynamics of ensembles of membrane proteins. The 
approach represents a natural system-theoretical extension of the classical Hodgkin and Huxley 
theory (HH theory) [14]. 

In this approach, a single protein molecule is treated as a microscopic probabilistic machine (a 
Markov system) with transitional probability densities depending on various macroscopic variables 
such as membrane potential and concentrations of different chemicals (neurotransmitters). The 
microscopic outputs of all molecules in a certain conformation (state) are summed up to produce 
the total macroscopic output of an ensemble of microscopic machines in this state. In the case 
of an ensemble of ion channels, the output is the total ion current. In the case of an ensemble of 
enzymes, the output is the flow of a chemical (e.g., the second messenger). 

The time constants of the macroscopic dynamics of the ensembles of the above machines 
depend on the values of the transitional probability densities. The smaller the densities the bigger 
the time constants. In the case of the HH model the time constants for sodium and potassium 
channels are rather small (milliseconds). In more complex cases, however, it is not unreasonable 
to postulate time constants ranging from split seconds, to minutes, to hours, and even to davs 
[13]. 

8.5    The statistical molecular dynamics of E-states 

To formalize the above intuitive description we need to introduce the following definitions. 
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Definition. A Probabilistic Molecular Machine (PMM)5 is a system (X, Y, S,a,cj), where 

• X and Y are the sets of real input and output vectors, respectively 

• S= {SQ, ..., sn-i} is a finite set of states 

• a:XxSxS—► R' is a function describing the input-dependent conditional probability 
densities of state transitions, where 
a(x, Si, Sj)dt is the conditional probability of transfer from state Sj to state Si during time 
interval dt, 
x e X is the value of input, and R' is the set of non-negative real numbers. The components 
of x are called generalized potentials. They can be interpreted as membrane potential and/or 
concentrations of different neurotransmitters. 

• w:XxS-> Y is a function describing output. The components of y are called generalized 
currents. They can be interpreted as ion currents and/or the flows of second messengers. 

Let x € X, y 6 Y, s E S be, respectively, the values of input, output, and state at time t, and let 
Pi be the probability that s = Si. The work of a PMM is described as follows: 

-rf = ^>2a(x,si,sj)Pj - PiY^<x(x,SjiSi) (H) 

n-l 

att = 0        ^2pi = l (12) 
t=0 

y = u(x,s) (13) 

Summing the left an the right parts of equations 11 for i = 0,..., n — 1, it is easy to verify that 
condition 12 holds for any /. 

Definition. An Ensemble of Probabilistic Molecular Machines (EPMM) is a set of identical 
independent PMMs with the same input vector, and the output vector equal to the sum of output 
vectors of individual PMMs. 

Let N be the total number of PMMs, TV* be the number of PMMs in state Si (the occupation 
number of state s,), and let e, = Ni/N be the relative occupation number of state s,. 
We have 

n-l 

y = NY^eMx,Si) (14) 
i=0 

The behavior of the average e~i is described by the equations similar to (11) and (12). 

~dt=Ylav(x)*J -*£adx) (15) 
n-l 

att = 0        53% =1 (16) 
i=0 
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Figure 18:   The interpretation of the macroscopic E-states as the occupation numbers of the 
microscopic states of a PMM. 

where a^(x) = a(x, Sj, Sj) describes the rate constant of transfer between states Sj and s*. 
The structure of equations 14 and 15 is illustrated in Figures 18 and 19. The diagram of Figure 

19 suggests that an EPMM provides a statistical implementation of a mixed-signal computer with 
the rate constants serving as input-controlled coefficients (that can serve as switches). 

Input-controlled 
coefficient matrix 
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> 
T 
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Figure 19: An EPMM as a mixed signal statistical computer. 

This implementation is extremely robust because the properties of the whole computer are 
determined by the properties of a single PMM. No interaction among PMMs is needed. Variable 
external connections are replaced by variable internal probabilities, and statistics does the trick. 
It is tempting to say that, in the same way as statistical mechanics of simple molecules leads 
to thermodynamics, the statistical mechanics of very complex molecule-machines leads to neural 
computations. 

5 One can also interpret the abbreviation PMM as standing for Protein Molecule Machine. 
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Another obvious advantage of the EPMM implementation of the dynamics of E-states is that 
this implementation relies on molecular time - the time constants do not depend on volatile 
parameters of neurons, synapses, and neural networks. 

8.6    The C++ program EPMM 

The EPMM program allows the user to simulate the dynamics of a cell with up to 10 different 
types of PMM each having up to 18 states. Two modes of simulation are supported: (1) the 
differential equation mode (n —► oo), and (2) the Monte Carlo mode with up to n=10000. 

Figure 20 presents the main screen of the program in the course of simulation of the spike 
dynamics in an HH-type of neuron. The sodium and potassium channels are represented as 
PMM's with 5 states shown on the screen. The user can change the structure of the PMM's on 
the fly and immediately see how this change affects the shape and the frequency of spikes. 
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Figure 20: The main screen of the EPPM program. 

Remarks: 

1. The EPMM formalism gives one a tool for implementing a broad range of sophisticated next 
E-state procedures. The complexity of such procedures depends on the postulated structure 
of the PMM's and on the way the EPMM's interact in a cell via membrane potential and 
second messengers. 

2. We use the HH theory as a test case for the EPMM formalism. In the example shown in 
Figure 20, two simple PMMs corresponding to sodium and potassium channels, interacting 
via common membrane potential, produce quite sophisticated spike dynamics. Much more 
complex dynamics can be implemented in a similar way by using more complex PMMs. 

40 



3. Using the software similar to EPMM and EROBOT, a broad range of neurobiological and 
psychological implications of different hypotheses about the properties of membrane proteins 
can be explored via computer simulation. Accordingly, the discussed approach offers a 
solid foundation for a multidisciplinary research aimed at the development of a biologically 
consistent and predictive (rather than merely biologically inspired) mathematical theory of 
the brain. 

9    Promising directions of research 

There are many interesting problems and possibilities associated with the development, explo- 
ration, and understanding the symbolic/dynamical computational paradigm represented by E- 
machines. These include: 

1. Decoding temporal sequences. Adding lateral pre-tuning to the next E-state procedure 
addresses this problem. The corresponding PEM can learn to simulate, in principle, any 
output independent finite memory machine. Introducing a delayed feedback in the above 
PEM leads to a system capable of learning to simulate any output dependent finite memory 
machine [7, 9]. 

2. Waiting associations. One can add an E-state creating an effect of waiting association. 
In this way one can produce an effect of a finite stack without using a RAM buffer, and 
simulate context-free grammars with limited memory. This allows one to get an effect of 
calling and returning from subroutines [7]. 

3. Broad temporal context. This effect can be produced by adding different types of "spread- 
ing" E-states. Changing the time constants and the radii of spread of such E-states leads 
to a broad range of effects of context-dependent mental set [7, 9, 33]. 

4. Active scanning of associative memory. People can answer the questions about what 
happened after or before a certain event. This effect can be achieved by first creating an 
E-state profile that activates the information about the mentioned event, and then actively 
shifting this profile in the time-wise or counter-time-wise direction. This can be done by 
introducing additional control inputs in a PEM. 

5. Inhibiting data with given features.   One does not have to think about the E-states 
excitations" or "activations". One can imagine the E-states producing inhibiting, pre- 

inhibiting, pre-activating, post-activating, etc. effects. In fact, any functions over sets of 
data stored in the LTM that assign some dynamic labels to the subsets of data can be 
thought of as different kinds of E-states. For example, one can imagine a situation in which 
one first creates an E-state activating a set of data (by addressing this data by content), 
and then temporarily inhibits the selected set of data by sending some inhibiting control 
input. The brain has many different neurotransmitters and receptors that may justify 
different hypotheses about the possible types of such control inputs. This again points to 
the importance of complex molecular computations mentioned in Section 8.6. 
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6. From signals to symbols and vice versa. The most likely candidate for the E-machine 
paradigm is the neocortex. In this metaphor, system AM corresponds to the frontal lobe, 
whereas system AS corresponds to the other three lobes as shown in Figure 21. 

Motor and sensory of the neocortex 

Motor control Working memory, eptsodrc 
memory, and mental imagery 

AM AS 

Pr#c#otrftt Central         PottcMtrai 
9Y~* *u»cu*          gyms 

FRONTAL LOB4E 

. ;> 

,^^/ggjm^^i     PAMETAL L08E 

> 

3 *       OCCIPITAL 
•""                                                    /- LOBE 

TEMPORAL LOBE 

Figure 21: The AM <=> AS architecture of the human neocortex 

To make the E-machine paradigm practically implementable at the level of the neocortex, 
the lower levels of the brain must be able to convert sensory signals into sensory symbols, 
and motor symbols into motor signals. One of the possibilities is that the signal-to-symbol 
conversion is done by different feature detectors. Each detector would have a fixed sparse 
ID serving as a unique pointer to this detector. The sets of such IDs would form primary 
sensory alphabets. Similarly, the units generating primary motor features would have sparse 
IDs forming primary motor alphabets. With this approach, the higher association areas of 
the neocortex could deal mostly with symbols represented by the sparse IDs. 

6.   High dimensionality of sensory devices.  On the blessing of dimensionality. One 
of the striking differences between the signal processing in the biological brain and that in 
artificial cognitive systems is the dimensionality of inputs and outputs. As an example it 
is helpful to consider a typical automatic speech recognition (ASR) system and compare it 
with the human speech recognition (HSR) system [30].. 

A typical ASR system described in [31] starts with the 256-dimensional input vector repre- 
senting short-term Fourier coefficients of the overlapping speech frames sampled 100 times 
per second. After several steps of intermediate processing, this 256-dimensional vector is 
transformed into, 39-dimensional vector consisting of 12, so-called, cepstral coefficients (and 
their two time derivatives), and the, so-called, log frame energy (and its two time deriva- 
tives). This 39-dimensional vector is presented to the higher levels of the ASR system for 
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further processing. 

The HSR system starts with w 4000-dimensiorial vector representing the output of the 
inner hair cells in cochlea of each ear. See Figure 22. This vector can be thought of as 
some counterpart of the 256-dimensional vector of the short-term Fourier coefficients of the 
ASR system. The number of cells processing the above auditory input expands to w 90,000 
cells in the cochlear nucleus, to % 390,000 cells in the inferior colliculus, to % 580,000 
cell in the medial geniculate body of the thalamus, to « 100,000,000 cells in the primary 
auditory cortex. The firing of the subsets of the latter cells represent the auditory world to 
the higher levels of the neocortex. How can the higher levels make sense of this extremely 
high-dimensional input? 
It is intuitively obvious that there must exist some blessing of dimensionality that is effi- 
ciently utilized by the higher levels of the HSR system. The metaphor ''neocortex as an 
E-machine" provides an insight into the nature of this blessing of dimensionality. The neo- 
cortex is a massively parallel system. It does not have time to compute different auditory 
features on the fly. However, it can efficiently pre-tune the subsets of the already formed 
feature detectors by changing the E-states. The more feature detectors are formed in the 
primary auditory cortex, the easier it is for the higher levels of the neocortex (organized as 
E-machines) to pre-tune the needed subsets of feature detectors depending on context. 

Intuitively, the combinatorial possibilities of parallel dynamic reconfiguration associated 
with the "nonclassicaT symbol processing paradigm employed by E-machines (dealing with 
functions representing subsets of pointers to activate subsets of "immovable symbols") over- 
comes the curse of dimensionality. In contrast, this curse plagues all systems that rely 
on 'classical" symbol manipulation techniques (dealing with pointers to move symbols in 
memory). This holds for the higher levels of processing in all existing ASR systems we are 
aware of. 

-100.000.000 cell* 3* 

-580.000 oelte 

-390.000 ceM& v^ 

-90.000 cete 

-4.000 inner hair ceife 
-12.000 outer har cells 

-30 000 fibers 

Figure 22: Human auditory pathways: there must exist some blessing of dimensionality. 
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7. Sparse recoding in a hierarchical structure of associative memory. As mentioned 
before, a complex E-machine (CEM) is a hierarchical associative learning system built from 
several PEMs. The concept of sparse IDs can be extended to allow the PEMs of higher levels 
to store data in terms of sparse-recoded references to the data stored in the PEMs of lower 
levels. This would naturally produce different effects of data compression and chunking (see, 
for example, [1]). 

8. Communication via association fibers.  The sparse encoding of symbols addresses the 
question of how the homogeneous areas of the neocortex of different modalities and levels 
(treated as PEMs) could efficiently communicate via association fibers. The numbers of 
association fibers are not big enough to provide crossbar connectivity. In the case of sparse 
encoding of symbols, several symbolic messages could be sent simultaneously with a low level 
of crosstalk. This would allow any small subset of talkers to broadcast their sparse-encoded 
messages simultaneously to large numbers of listeners. The only limitation is that not too 
many talkers must talk at the same time through the same set of association fibers. As an 
example, our estimate shows that around m « 50 neuron-talkers can talk simultaneously 
ton« 109 neuron-listeners through k w 104 association fibers. That is, any-nl-to-any-n2 
communication is physically impossible if nl = nl = 109 - it would require 1018 connections. 
However, any-m-of-nl-to-any-n2 communication is quite possible if m « 50, and nl = n2 « 
109. 

9. Computing statistics on the fly depending on context.  At the symbolic level, the 
brain may not pre-compute statistics at the time of learning because statistics depends on 
context. How could the neocortex compute statistics on the fly depending on context? A 
sparse encoding of symbols offers a solution to this problem. If we change the procedures 
of CHOICE and ENCODING to allow several sparse-encoded symbols to be read simulta- 
neously from the locations of OLTM with a "high enough" level of activation, sununing up 
several sparse vectors produces a statistical filtering effect [7]. 

10. Natural language. This is the most challenging and interesting problem that, we believe, 
is well suited for the E-machine paradigm. It takes less information to dynamically activate 
the data structures that are already present in the LTM than to create new data structures. 
Even less information is needed if some data structures are already pre-tuned through the 
inputs of other modalities. Accordingly, unlike the statements of a formal language, the 
sentences of a natural language do not need to carry complete information. A hint can 
be sufficient to remove ambiguity in a given context. This sheds light on why people with 
similar backgrounds (G-states) and mental sets (E-states) can efficiently communicate via 
short messages, whereas people with different backgrounds and mental sets have difficulties 
understanding each other. 

11. Emotions and motivation. We should mention the problem of emotions and motivation. 
Can the E-machine paradigm shed light on this problem? Let us postulate that, at a higher 
level, there exists some symbolic representation of emotions - otherwise our language would 
not have the names for our emotional states. If this postulate is correct, the E-machine 
formalism can be applied to the higher level learning involving emotions. People remember 
t heir pleasant and unpleasant emotional states. This means that, at a higher level, the effect 

44 



of positive/negative reinforcement cannot be reduced to the effect of increasing/decreasing 
the weights of sensorimotor associations. We postulate that, at a higher level, the brain forms 
associations involving the symbols representing emotions and other observable internal (I) 
states. The sets of these associations can be dynamically reconfigured depending on context 
by changing the E-states. This helps to understand why our concepts of "good" and "bad" 
depend on our knowledge and mental set. 

It is easy to imagine a situation when retrieving emotional symbols affects control inputs 
that change the E-states that, in turn, affect the retrieval of emotional symbols, and so on. 
This would shed light on the nature of various self-reinforcing loops, such as the well known 
panic attack loop. 

12. Long-term learning. The utility problem. One of the most difficult and, practically, 
most important problems encountered by traditional AI-type theories of symbolic learning 
is the, so-called, utility problem [29, 27, 28] - after a sufficiently long time of learning, t be 
performance of a learning system begins to deteriorate. In contrast, human performance 
dramatically improves with learning. Our ability to learn increases with learning. We learn 
how to learn and even how to learn how to learn. The more knowledge we acquire the easier 
it becomes to learn more. Intuitively, this nonlinear effect is the result of learning with the 
references to what has already been learned. It also is a result of the brain's remarkable 
ability to use knowledge acquired in one context in a large number of other contexts - the, 
so-called, transfer of experience between contexts. 

We believe that the E-machine type approach to the problem of symbolic learning and con- 
text - learning is accumulation of symbolic knowledge in LTM and context is a dynamic 
reconfiguration of this knowledge by the functions represented by E-states - is well suited 
for tackling the problem of symbolic long-term learning. We argue that only a univer- 
sal learning algorithm - an algorithm close, in a sense, to a complete memory algorithm 
used in Model 2.2 - can provide the expanding ability to learn and avoid the utility problem. 

Remarks: 

1. It is important not to confuse the behavior aimed at learning (e.g., studying at the 
Stanford university) with a learning algorithm = data storage algorithm. In a Turing 
universal learning system, a simple universal learning algorithm can, theoretically, pro- 
duce arbitrarily complex behavior aimed at learning. We argue that the critical issue 
for the human-like long-term learning is what information to learn rather than how to 
store this information in the learner's LTM. Somehow, this critical issue is largely ig- 
nored when machine learning is compared with human learning. There is a "gold rush" 
for the development of all kinds of smart learning algorithms - hundreds of different 
learning algorithms are already invented. The general believe motivating this research 
is that the power of the brain is a result of some special learning algorithm(s). 

2. It is easy to see that the vision of a "supersmart" learning algorithm is a fallacy. Doing 
too much pre-processing of "raw" learning information before storing this information 
in LTM is not a good strategy in the case of a system that must deal with a very large 
number of contexts. No data storage algorithm can, in principle, know in advance 
what information may become useful in future contexts. Therefore, a system capable 
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of efficient ly dealing with a very large number of different contexts must rely on the 
power of an efficient dynamic interpretation (decision making) procedure rather than on 
a "smart" data storage algorithm. The catch is that the loss of information at the time 
of learning is irremediable at the time of decision making. Theoretically, a powerful 
enough interpretation procedure can always make up for a dumb but universal learning 
algorithm - such as a complete memory algorithm. In contrast, no interpretation 
procedure can make up for a smart learning algorithm that loses information. 

10    List of topics for Phase II (Task 10) 

Here is an extended list of possible topics for the Phase II of the MoB project. The specific topics 
will be selected depending on the available resources. 

1. Setting real-time simulation environment 

The C++ simulation environment on a Windows XP personal computer was sufficient for 
proving concepts at Phase I. In fact, we were able to provide a mathematical proof of the 
main concepts. This combination of theoretical studies and small scale computer simulations 
is not sufficient for Phase II. 

In most cases, the behavior of large E-machines cannot be understood theoretically. To 
make a serious progress toward understanding the cognitive possibilities of this class of sys- 
tems we need to set a development environment allowing real time simulation of hierarchical 
E-machines with the size of LTM on the order of 10-100GB. Our estimates of the size of t he 
human brain's LTM are on the order of 10-100TB. 

We would like to be able to do several large scale simulations demonstrating the efficiency of 
the E-machine paradigm for a broad range of cognitive problems that are difficult to solve 
using conventional computers6. These include: 

2. Motor Control 

(a) Afferent synthesis of sequential movements. 
Synthesizing a complex sequential motor program by pre-tuning the elements of the 
already learned motor programs. Example: babbling syllables and then learning to 
produce words consisting of these syllables. 

(b) Afferent synthesis of parallel movements. 
Synthesizing a complex parallel motor program by sequentially pre-tuning parallel com- 
ponents of this program and then executing the whole program in parallel. Example: 
learning to play piano by training different hands and then producing two hand move- 
ment in parallel. 

6What is critically important is that (with an appropriate hardware that can be developed at Phase III), the 
E-machine paradigm is scalable to the size of human neocortex. To our best knowledge, this is not true in the case 
of the majority of traditional ANN and AI algorithms. 
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(c) Inverse kinematics. Imitating a multi-link arm movement by being shown only 
the trajectory of the end of the last link. The trajectory can be executed in many 
different ways. The effect is achieved by pre-tuning the elements of the already learned 
trajectories. No trigonometric computations used in the traditional approaches to 
reverse kinematics are allowed - the brain cannot perform such computations. 

(d) Controlling parameters of movements by speech instructions. 
(1) Single word instructions: faster, slower, stop, left, right, etc. 

(2) Simple sentences. Wait for xl. Find x2. Move to x3. Etc. The system must learn 
to execute these instructions, e.g., Wait for .., with the objects zl,z2,.. which were 
never presented in the context of these instructions. 

3. Active context-dependent pattern recognition. 

The system must learn to perform the actions that lead to pattern recognition in a given 
context. This is a more sophisticated approach to pattern recognition than just classification. 
The system must be able to learn to execute instruction:  What is it? 

4. Mental set. 

The system must interpret the same picture in different ways depending on its mental set. 
Example: the Necker cube. 

5. Language controlled mental imagery. 

The system must be able to generate different mental images depending on speech instruc- 
tions. 

6. Effects of actively scanning LTM. 

The system must learn to scan LTM in response to questions: what was before event x, 
what was after event x, etc. 

7. Communication among primitive associative memories in a hierarchical associa- 
tive memory. 

Demonstrating effects of data compression and context-dependent statistical filtering result- 
ing from the recoding of associations of lower levels. 

8. Comparing the amounts of computations for cognitive-level and neural-level 
simulations. 

The metaphor "neocortex as an E-machine" suggests that not all details of neural imple- 
mentation are important at the cognitive level. It is interesting to compare the amounts 
of computations needed for cognitive-level and neural-level simulations. Our preliminary 
estimates show that, at the cognitive level, the amount of computations can be reduced by 
the factor of 100-1000. 
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